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Diffractometric line profiles are ordinarily of little use in themselves, but are measured in order to 
derive from them some parameter of physical interest, such as the centroid position, the peak position, 
the variance, the integral breadth, the Fourier coefficients, etc. Since the counting rate Ij at the dif- 
fractometer setting 2~0~ is a random variable, all parameters derived from the Ij are also random variables, 
and in order to assess their reliability it is necessary to know their variances. Two methods of diffrac- 
tometer operation, fixed-time counting and fixed-count timing, are in common use, and a third, minimum- 
variance counting, has been suggested. Expressions for the variances of measures of intensity, location 
and dispersion are derived or quoted for all three methods of operation. Since for fixed-time counting 
the variances depend linearly on the Ij, whereas those for fixed-count timing depend on I~ and those 
for minimum-variance counting depend on I~, the expressions for fixed-count timing are generally 
the simplest. Background interpolation is always a complicating factor. 

1. Introduction 

1.1. Accurate measurements of X-ray intensities are 
now usually obtained by the use of quantum counters, 
Geiger, proportional, or scintillation. The powder dif- 
fractometer, for example, is set at a particular angle, 
2~0j, and the intensity is measured by counting the 
quanta detected. This process is repeated at a sequence 
of angles, distinguished by the suffix j, and the various 
parameters of the reflexion are calculated from the 
counting rate Ij observed at 2~0j, a background correc- 
tion being made if necessary. Among the parameters 
in general or prospective use are the following. 

objective, except perhaps for a little human interven- 
tion in the estimation of background level. Unfortu- 
nately it has not yet been possible to reduce the esti- 
mation of the measures of coherence to a routine, and 
one may view with some caution any detailed interpre- 
tation of such distribution functions. Since I~ is a ran- 
dom variable all quantities obtained by manipulating 
it are also random variables, and for the proper design 
of experiments it is necessary to have at least an order- 
of-magnitude estimate of the statistical variance of the 
derived quantities. General statistical theory leads to 
the conclusion that the variance of a function of several 
variables, F(Xl, x2, x3,.. .),  is given by 

I. Measures of intensity: 
(i) the peak intensity, 
(ii) the integrated intensity. 

II. Measures of location: 
(iii) the peak position, 
(iv) the median position, 
(v) the centroid position. 

III. Measures of dispersion: 
(vi) the half width, 
(vii) the integral breadth, 
(viii) the mean absolute deviation from the me- 

dian, 
(ix) the variance, 
(x) the Fourier coefficients. 

IV. Measures of coherence: 
(xi) the particle-size distribution, 
(xii) the strain distribution, 
(xiii) the distribution of mistakes and stacking 

faults. 

The parameters measuring intensity, location and dis- 
persion can all be obtained in a more or less routine 
fashion from the actual observations, and are so quite 

OF OF 
aZ(F) = .2[. ~ x i - ~  cov(xt, xj),  

I,J 

(1) 

where cov(xi, xj) is the covariance of xt and x~ if i # j  
and is the variance of xi, O'2(Xt), if i=j (Cram6r, 1946, 
p. 295). The measured intensities, Ij, are statistically 
independent, so that cov(h, I j)= 0, and where F is ex- 
pressed directly as a function of the Ij equation (1) 
reduces to 

(¢3F~ z 
a2(F) = ~ \ -~ j ]  a2(Ij). (2) 

These equations are strictly correct only if F is a linear 
in the x's or if the variance of each x is very small. 
Except for the integrated intensity, the functions of 
interest are non-linear, but the contribution of each I~ 
is in general sufficiently small to make the application 
of equations (1) and (2) plausible. Sands (1966) has 
recently used equation (1) in a discussion of the co- 
variance of bond lengths and bond angles. 

1.2. In this paper the estimation of the variance of 
parameters of intensity, location and dispersion is dis- 
cussed, and expressions are derived for some not pre- 
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viously investigated. The following assumptions are 
made: 

(i) The observations have been made at an odd 
number R = 2 r +  1 of equally spaced positions, num- 
bered from - r to + r, 

(ii) The background is determined by linear inter- 
polation between observations made just outside the 
above range, so that the background is statistically 
independent of the line profile, 

Off) The range is adjusted, whenever it is convenient, 
so that the peak or centroid, whichever is convenient, 
is less than half a step from 2~0, and 

(iv) The effect of variations in the step length is 
negligible. 

The first assumption is convenient, and it is clear 
that the use of an odd instead of an even number of 
points does not alter the problem in any essential. The 
interpolated background, 

G~=g + k j  , (3) 

is ordinarily determined by averaging observations at 
several steps, or counting for a longer than usual time, 
so that the variance of G~ is a small fraction (in prin- 
ciple a negligible fraction) of Gj itself (Appendix A). 
The assumption that the linearly interpolated back- 
ground is the true background, on the other hand, is 
probably a large source of experimental error, as it 
makes no allowance for possible non-linear variation 
of general scattering, unsuppressed white radiation, the 
peaking-up of thermal scattering under the Bragg peak, 
and similar troublesome effects. Though a source of 
experimental error, this assumption is not likely to 
affect seriously the limited objective of estimating sta- 
tistical fluctuations in the derived parameters. Choos- 
ing the range so that it is approximately symmetrical 
is frequently convenient, and symmetry about the cen- 
troid is a necessary (though not sufficient) condition 
for the Fourier components to be purely real. Centring 
within half a step can always be achieved by dropping 
a few observations at one end or other of the profile 
(Pike & Wilson, 1959). The effect of random variations 
in the step length on the peak position has been dis- 
cussed by Wilson (1965). 

1.3. The commonest method of determining the 
counting rate at the diffractometer setting 2~0j, fixed- 
time counting, is to accumulate counts during a pre- 
determined time, z, and divide the number accumu- 
lated, Nj, by z. A variation of this method, fixed-dose 
counting, is to accumulate counts during the time re- 
quired by a monitor counter fed by the same X-ray 
source to accumulate a predetermined number of 
counts. This method gives a somewhat higher variance 
than fixed-time counting, but is useful when it is im- 
practicable to stabilize the X-ray output (see, e.g. 
Eastabrook & Hughes, 1952). Now that highly stabi- 
lized X-ray sources are available it is of less importance. 
The second basic procedure for determining the count- 
ing rate is to measure the time, 0, required to accumu- 
late a predetermined number of counts c. The two ex- 

pressions for the counting rate are thus 

Ij= Nd~ (4) 
for fixed-time counting, and 

I j = c / t j  (5) 

for fixed-count timing. It is convenient to begin by 
recalling the statistical properties of Ij as determined 
by the two methods. 

2. Counting-rate distribution functions 

2.1. The statistical distribution functions for the two 
methods are closely related. The probability of obtain- 
ing c counts in a time z is given by the discrete Poisson 
distribution 

(20 c e x p ( -  20  
p~(c) = el (6) 

where 2 is an adjustable parameter. It is easily shown 
that the mean counting rate is 

( 1 > = ( c ) 1 z = 2 ,  (7) 

with a variance of 

a2(1) = ( ( c -  (c))2)]z2 = 2/z.  (8) 

Fixed-count timing, on the other hand, gives rise to 
a continuous distribution. The probability of requiring 
a time between t and t + dt to accumulate c counts is 

pe(t)dt  - (2t)c-a e x p ( - 2 t )  d(2t) .  (9) 
( c -  1)1 

This looks very like the equation for the Poisson dis- 
tribution, but the roles of variable and parameter are 
reversed; in equation (6) z is fixed and e is determined 
experimentally, whereas in equation (9) e is fixed and 
t is determined experimentally. The exact expressions 
for the mean counting rate and its variance are 

and 

c~ 
(I> = e -  1 (10) 

c222 
a2(1) = ( c -  1)2(c-2) ' (11) 

but in most practical applications c is a large number 
and the expression for the mean intensity and its vari- 
ance can be written as 

( 1 ) = 2  (12) 
and 

a2(/) =22/e.  (13) 

If c is not large equations (10) and (11) have to be 
used; the difference is 1% in counting rate and 4% 
in variance for c =  100. 

2.2. In diffractometric applications the value of the 
parameter 2 is ordinarily unknown. It could be ob- 
tained with considerable accuracy by averaging re- 
peated observations at each setting of the diffractom- 
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eter, but this would make the time required for 
measuring a line profile so long as to be impracticable. 
It is thus necessary to take a single measurement ls 
of the counting rate at the setting 2rpj. as the only 
available estimate of the corresponding 2. The estimate 
of variance is then 

a2t(Ij) = lj/z (14) 

for fixed-time counting, and 

~(Ij)=I~/(c-2)  (15) 

~I2/e (16) 

for fixed-count timing. The variances of a derived par- 
ameter F are thus, from equation (2), 

(fixed time) a2t (F) 1 Z [ ~3F] 2 = ~ j ~b-~j! I j ,  (17) 

and 

(fixed count)a~¢(F)=127 (tg~j) 2 ~- J lff. (18) 

Often, the available equipment will function in only 
one of the two modes of intensity measurement, and 
the question of choosing between them will not arise. 
If both are available, the first problem in experimental 
design will be to decide which will give the smaller 
value of aZ(F), c and z being determined so that each 
method would require about the same total time for 
collecting the observations. In principle it is possible 
to adjust z~ or c~ as a function of I~ so that the variance 
of any desired parameter is minimized. This was shown 
by Zevin, Umanskij, Khejker & Pan~enko (1961) for 
the centroid, and generalized by Wilson, Thomsen & 
Yap (1965). They found that the general expression for 
the minimum variance of the parameter F is 

~-~-j [ I~ , (19) 

where T is the total time allowed for collecting the 
observations. It is remarkable that the minimum vari- 
ance is a perfect square (aside from the factor T), so 
that the standard deviation takes a simple form. Un- 
fortunately no instrument capable of producing the 
necessary continuous adjustment of the counting time 
is yet in existence. In terms of the total counting time 
equations (17) and (18) take the form 

and 

4 (F) = R (20) 

o-2(F)- R(Ii-l> [SF] 2 
T f \~-~-j] I~ (21) 

for fixed time and fixed count respectively. It is clear 
that parameters that change rapidly with I where [ is 
small and slowly with I where I is large will tend to 
have variances smaller than those of parameters with 
the opposite relation to L Parameters dependent only 
on the line profile in the neighbourhood of the peak 

will have much the same variance whatever method is 
used, since I3" itself does not vary greatly in this region. 

2.3. Since fixed-time counting leads to variances de- 
pending directly on Ij, these variances tend to be more 
simply related to the properties of the line profile than 
do the variances resulting from fixed-count timing or 
minimization techniques. The latter involve similar 
relations to the square or square root of the line profile, 
and are thus less easy to visualize. There is perhaps some 
analogy with the simplicity of an electron-density syn- 
thesis compared with a Patterson synthesis. 

3. Measures of intensity 

3.1. The peak intensity 
The calculation of the variance of the peak intensity 

is trivial, whatever method of measurement is chosen, 
and gives effectively Io/T. Mack & Spielberg (1958) 
have discussed in some detail the best use of the avail- 
able counting time when the quantities of interest are 
nett peak heights (actual height minus background), 
or differences or ratios of nett peak heights, as in 
quantitative analysis. The variance of the nett peak 
height is, of course, the sum of the variances of the 
peak height and of the background at the peak position 
(Appendix A). 

3.2. The integrated intensity 
The integrated intensity is given by 

L 0 = S  (Ij-Gy), (22) 
J 

so that 8F/3I~ is unity. The fixed-time variance is thus 
the total intensity of line plus background divided by 
z, and for lines of ordinary profile will be less than 
the fixed-count variance, which is the total of (line plus 
background) 2 divided by c. The explicit equations are 

~2< (L0) = (L0 + Rg)l.c + ¼R2[~,~, (CR) + G~, (GL)], (23) 

and 
a2c(Lo)=271~ /c+¼RE[a2c(GR)+a2~(GL)], (24) 

J 
where the background variances are given in Appendix 
A. The minimum variance [equation (19)] is 

1 
o'2in(Lo) = ~ { f  I~}2+¼R2[GLin(GR)+G2min(GL)]. (25) 

The integrated intensity is not affected by the back- 
ground slope, but it is sensitive to the mean back- 
ground. The variance arising from this source is indi- 
cated explicitly in equations (23) to (25), but in all 
reasonable cases it is nearly enough R2g/Tg, where Tg 
is the total time devoted to the determination of the 
background level. 

4. Measures of location 

4.1. Variance of the peak position 
The variance of the peak position has been discussed 

by Wilson (1965), who considered three methods of 
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peak location: fitting a least-squares parabola, bisect- 
ing horizontal chords, and using a type of scanning 
photometer. Only the first of these lends itself to a 
strict estimate of variance of the peak position. If the 
least-squares parabola has the equation 

[j = A -t- Bc~j q- C (~2j 2 , ( 2 6 )  

Wilson showed that the variance of the peak position 
is approximately 

where 

(P~-  PoP4)2,~SM2 

4 (-  B/2Ca) = 4P ~(Pia2Mo- PoM2) 2' 
(27) 

p 
P k =  27 j~, (28) 

j = --p 

6 is the step length in 2~0, P = P0 = 2p + 1 is the number 
of observations to which the parabola is fitted, and 
M0 and ME are the zero and the second moment about 
the peak of the portion of the line profile used in fitting 
the parabola. This expression was derived for fixed- 
time counting, but the range of observations P will be 
much smaller than R and the intensities Ij will vary 
by only a small amount, perhaps 5% or 10%, so that 
other methods of observation would not give appre- 
ciably different variances, provided that the count is 
adjusted to give the same total time for the portion 
of the profile actually used. 

The effect of background slope on the peak position 
is discussed in Appendix B. 

4.2. Variance of  the median 
The median position divides the line in such a way 

that half the intensity lies to the left of it and half to 
the right. It is then at the step m that most nearly 
satisfies the equation 

m--1 
Z' ( I s - G j ) =  X ( I j -G j ) .  (29) 

j =  - - r  j = m + l  

Though m is determined by the Ij, it is not a differenti- 
able function of them, and so equation (2) cannot be 
applied. The following argument should, however, give 
a rough estimate of the variance of the median posi- 
tion. Suppose that the true median is at m and the 
corresponding true intensity is Ira. Any particular set 
of measurements is unlikely to satisfy equation (29). 
Suppose that the actual value of the left-hand side of 
(29) is L1 and of the right-hand side is L2. The step 
actually determined for the median by these measure- 
ments will not be m, but some other position n given 
approximately by 

L 2  - Lx 
n=m+½ , (30) 

im 

where it is assumed that Ij does not vary rapidly near 
j =  m. The variance of the median step is thus 

1 
a2(n-m) = 4-~2 cr2(Lz-L,) (31) 

1 
- 412 {°'2(L')w°'2(L2)-2 cov(Lx, L2)} (32) 

1 
- 412 {t72(Lo)-4cov(L1,L2)} (33) 

where L0 is the total line intensity. The covariance of 
L I  and L 2  arises only through the interpolated back- 
ground, and is thus small. To a first approximation, 
therefore, the variance of the median angle is 

0"2(2film) = c$2cr2(n - -  m) 
~2 

- 412 a2(L°) (34) 

where a2(Lo) is given by the appropriate one of equa- 
tions (23) to (25). 

4.3. Variance of  the centroid 
4.3.1. The centroid of the line profile is given by 

X ( I j - g - k j ) ( 2 ~ j )  
(20,> = J (35) 

X ( I j - g - k j )  
J 

Z" (I s - kj)(2fpj) 
= J . . . . . . . . . . . . .  (36) 

X ( I j - g )  ' 
J 

the terms in g vanishing from the numerator and those 
in k from the denominator because of the symmetry 
of the range chosen. Since g and k are not independent 
variables (Appendix A) it is simpler to write them in 
terms of the backgrounds at the ends of the range, GL 
and GR, and thus avoid covariance terms. Equation 
(36) becomes 

X [Ij-(GR-GL)j/R](2~oj) 
<2~0> = j (37) 

2 Ij-½R(GR+GL) ' 
l 

so that 

8Ij L0 L0 ' 
(38) 

8(2~> _ - X j ( 2 ~ j )  + _R_(2~..>_ (39) 
8GR RLo 2Lo ' 

0(299> Z'j(2q)j) R(2~0> 
_ _  . . . .  , 

8GL RLo + 2Lo (40) 

where L0, as in equation (22), is the integrated intensity 
of the line alone. 

These expressions could now be substituted in equa- 
tion (2), giving a long and clumsy expression. The range 
has been chosen, however, so that <2~o> is less than ½fi, 
and the terms in <2~o> can thus be ignored in the esti- 
mation of the variance of the centroid. Since 2~o~ =jfi 
the sum in equations (39) and (40) is 

A C 2 3 - 2  



892 S T A T I S T I C A L  V A R I A N C E  OF L I N E - P R O F I L E  P A R A M E T E R S  

r 

j X j2=½r(r+ 1)(2r + 1)6 (41) 
j ~  --/" 

= 1__ ( R -  1)R(R + 1)J 
12 

1 
~ 1-2 R3a" (42) 

The variance of the centroid is then 

a2((2(p)) = (2~0j)2a2(Ij)+ ~ [a2(GI¢) +a2(GL)] . 

(43) 

The first term is closely related to the variance of 
the line, being the variance of (line plus background) 
divided by T when fixed-time counting is used. In this 
case 

] 
R4~2 

+ lq-4-L~ [a~(aR)+4(aL)] 
R4t~2 

- LoTW + G~+GL2L2~_ j2 jXj2 + ~_4__~L2o [a2t(GR)+a~t(GL)] 

W (GR"b GL)Rat~ 2 R4~ 2 
- LoT + 24L~T + ~ [a~t (GR) + a~t (Gr.)], 

(44) 
where W is the variance of the line alone. This differs 
from equation (20) of Pike & Wilson (1959) in nota- 
tion, especially in the use here of the variance of the 
line instead of the variance of (line plus background), 
but not otherwise. 

4.3.2. Since W is ultimately proportional to the 
range of observation used, the variance of the centroid 
is an increasing function of R. For the accurate deter- 
mination of lattice parameters, therefore, it is advan- 
tageous to use as short a range as is consistent with 
including all essential features of the line (such as K~3), 
to reduce the mean background as far as possible (pro- 
portional or scintillation counters with pulse-height 
discrimination instead of Geiger counters; crystal-re- 
flected instead of filtered radiation), and to use long 
counting times in determining the background so that 
the variance of the background is small. 

4.3.3. The corresponding fixed-count variance is, 
from equation (43), 

o,=o((2~)) 1{+ "462 } 
= -~0 Xj (2~j)2I~+ ~ [ag(GR)+ag(GL)] . (45) 

The sum in the first term of this is the variance of the 
profile (line plus background) 2 multiplied by the inte- 
grated intensity of (line plus background) 2, and is not 
easy to represent in terms of any simpler concepts. 
Representing these factors by WE and L2 gives 

~ ¢ ( ( 2 ~ ) ) -  L2W2 R4J 2 
L~,c + 1~4g~o [~o(aR) + G~o(CL)]. (46) 

The minimum variance, from equations (19) and 
(38), is 

a~i=((2~0)) 
1 ) a R4~2 

- 12~0;lI}} -b [~2min(GR)-bo'2min(GL)] 
TL~ , j ~4L~- " 

(47) 

The first term is related to the square of the mean 
absolute deviation from the centroid, and is perhaps 
easier to evaluate numerically than to visualize. 

5. Measures of dispersion 
5.1. The half-width 

The variance of the half-width (full width at half 
height) may be estimated by a variation of the method 
used by Wilson (1965) for the variance of the mid- 
chord. The experimenter's eye may be assumed to 
average out statistical fluctuations over a few points, 
say s, in the neighbourhood of the half height, in a 
manner approximating to fitting a least-squares straight 
line to the points, and the abscissa xt of the left-hand 
end of the chord at half height will be given by 

at + btxz = ½(I -  Gz) + GI , (48) 
where a and b are the coefficients of the least-squares 
line, I is the peak height and G is the background. 
The abscissa of the right-hand end will be given by a 
similar equation with subscripts r instead of l, so that 
the half width w is given by 

W = Xr -- Xl 
= ½I(b;- i _ b- i- x) + ½(Grb;- 1 _ GzbT. 1) _ (arb;- a _ azb7.1). 

(49) 
Of the quantities appearing on the right, only I is 
statistically independent of all the others. The variance 
of w arising from I is thus 

a2(w) = ¼(b71 _ b 7 1)20"2(I), (50) 

where a2(I) is as discussed in § 3.1. In normal cases 
br and bz are approximately equal and opposite, so that 

a, = (w) ,-, az(I)/b 2 . (51) 

Since Gr and Gz both depend on GL and Gn (Ap- 
pendix A) the latter are the independent variables, and 
the variance arising from the background is 

( l ~ G r  1 cqGt) 2 
- a ~ ( G L )  a~(w) = -2br OGL 2bt ~ L  

+ similar term in GR 

= ¼{ [ R-2Xr2Rbr R-2xI]2a2(GL)2Rbt J 

[ R + 2 x r  R+Ext]2a2(GR) } (52) 
+ t 2kt;r . . . .  2~z  J 

1 1 .) 2 1 xz 2 
= { [ ¼ ( b r  bl , + R E (  x r  br b, ) ] °'2(g) 

1 1 1 xz ) ~ 1 
-- '~R-(br b l ) (  xr  [°'2(GL) tr2(VR)] (53) 

br bz/  " 
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If br, bz; Xr, Xz; are approximately equal and opposite 
this becomes 

a2a(w) ~ a2(g)/b 2 . (54) 

The variance of xz arising from at and bz was eval- 
uated by Wilson (1965) as 

172a,b(Xl) ~ S46~5M0 
144M~ (55) 

in the present notation, where M0 and Mx are the zero 
and first moment, about the central point, of the por- 
tion of the line profile used in determining equation 
(48). The appropriate value of Mo is s3a~, and of M1 
is s3c53bt/12, so that equation (55) becomes 

a2a,b(xO ~ adsb~ , (56) 

and the total variance of w arising from the a's and 
b's is 

a2a.t,(w) ~ (adb~ + ar/b~)/s . (57) 

The full variance of w is the sum of equations (51), 
(54) and (57), or in approximate form 

1 [ /  g 
o~ (w) ~ + - + 

P 
(58) 

for fixed-time counting, where qr is the counting time 
used in fixing the peak height and pr  that used in fixing 
the background. Fixed-count timing would give ex- 
pressions of different form, but as the range of inten- 
sities within each of the separate determinations (I,g, a) 
is not great the final result would not be greatly dif- 
ferent if c and z were adjusted so that the times re- 
quired were approximately equal. 

5.2. The integral breadth 
The integral breadth is given by the total intensity 

divided by the nett peak intensity, 

f l= L o / ( I -  g) , (59) 

in units of ~. A complication arises in that the I: used 
in determining I are the same as those that contribute 
most to L0, and hence the variance is less than if I 
and Lo were statistically in'dependent. The effective sta- 
tistical equation is 

I : - R g  
2= -" (60) fl = 1 ½(q-O 

- -  22 I j - g  
q j = --½(q--l) 

so that 

--½(q-t" l) O.2(/j) 
a2( f l )  = 2: 

j=--r (I_g)Z 
- -  + ~; : ( / J )  

j =  ½(q+l) ( I - g )  z 

1 Lo z 
1 - g  (I2-~)2q ] az(/J) 

I - g  a2(g) 

½(q- l )  
22 

j = --½(q--l) 

(61) 

I ~ a2(ij) 
( l - g )  z j=--r 

2L0 ½(q-O 
22 ~ 2 ( 6 )  . . . . . . . . . . . .  

q ( l - g )  3 i=-½(q-l~ 
L 2 ½(q-l) 

+ S a2(lj) 
q2( I -g)4  j=-½(q-l)  

+ (R-fl)~ 
(I-g)~ :(g)" (62) 

This rather complex expression may be simplified in 
appropriate ways. For fixed-time counting it becomes 

Lo + Rg 2Lol L~I 
af2t(fl) = (i_g)Z.c (I--g)3r + q(i---gj4z 

+ - g ( R - f l ) z  (63) 
pr ( I_g )2  ' 

L°Z ( 1 -  qI )  g [ R p + ( R - f l )  2] (64) 
~ ql3----- ~ ~ + pl2.r 

if the background is small enough. For fixed-count 
timing equation (62) becomes 

a~c(fl) _ 1<2o 2Lo Iz L~I 2 
( I -g )2e  (I--g)3c + q(i_--~g)4 e 

g2( R -  fl )2 
+ p ( l _ g ) 2  c , (65) 

where K0 is the total of (line + background) 2. For 
small g it reduces to 

(1 
qI2-----c Lo + 

g2(R_p)2 
+ - - .  (66) plZe 

5.4. Mean absolute deviation f rom the median 
The mean absolute deviation from the median is 

22 12~0:-2~0~1(/j- Gj) 
M-= (12~0-29ml} = j . . . . . .  (67) s(6-GD ' 

J 
so that 

3M 12~@-2~0m1 M 
OIj - Lo - L o '  (68) 

O M _  1__ 2 2 ( M - 1 2 ~ 0 j - 2 ~ 0 m ) [ ½ + J ] ,  (69) 
OG• Lo : 

c 3 M -  1 L" (M-I2q~j-2C, o m l ) [ ½ -  -~-] . (70) 
OGL Lo j 

If the median is centred the term 29m will be less 
than half a step length, and for any reasonable line 
the median will not be far from the centre of the range 
even if it is the centroid or the peak that is centred. 
Neglecting 29m in comparison with M is therefore le- 

A C 23 - 2* 
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gitimate in estimating the variance of M. Equations 
(68) to (70) become 

and 

~ M  
c~/: - (12+:1- M)/Lo (71) 

8 M 8 M RM fi 
CgGR cgGL 2L0 2L0 27 [j[ (72) J 

RM ( R -  1)(R + 1) 
2Lo 8Lo 

(73) 

RM R2• 
2L0 8L0 " 

(74) 

These bear a close resemblance to equations (38) to 
(40), with M replacing (2+). The contribution of the 
intensities to the variance of M is 

1 
a2(M) = -~o ~ (12+:1-M)2a2(I:) (75) 

1 
- Lo 2 2: [(29:) 2 -  2MI2+:I + M2]a2(Ij). (76) 

J 

For fixed-time counting this is 

1 
a~,r,(M) = ~ ~ [(2+:) 2 -  2MI2+:1 + M2]/j (77) 

1 I-W+ g 2Mg 
- zLo [ -~o 27 (2+:)2- 2MZ 27 [2+:I j L0 j 

+ M 2 +  Lo J 

1 { R3g3 z MgRZ3 .__R_gMZ[ 
" -cL-----o W - M 2 +  12Lo 2Lo + Lo J '  

(78) 

where W is the variance of the line profile. In addition 
there is the variance arising from the background: 

R z 
a2(M)=  - ~ o  (M-¼Ra)2[a2(GR)+aZ(GL)]" (79) 

Fixed-count timing and minimum-variance tech- 
niques give expressions based on the square and the 
square root of the line profile respectively. 

5.5. The variance 
The variance is defined by 

27 (Ij-G,)j  z [ Z (I:-G,)j  [ 2 

":: <1'-+ -I 
in units of (step length) z. The second term is just the 
square of the centroid position, (2+), but it has been 
written in full to emphasize its dependence on the 
counting rates lj. With the range symmetrical, to the 

nearest half step, about the centroid, the second term 
cannot exceed one-quarter. Differentiation gives 

_ _ 2<2+> 2 3W jz W (2+) z 2(2+>j + .. . . .  (81) 
a-b37- L0 L o - - t o  . . . . . . .  -Lo-  L0 

The terms involving the centroid are clearly small com- 
pared with the others, and may be ignored. The vari- 
ance thus becomes 

R 
0"2 (W)  ---- --~r-Y 27 (j4 _ 2 Wj 2 + W2)/j .//..~ J 

R Rig 
- TL-----o [M4- W z] + --T~2~ [M4g- 2 W W g  + W21, (82) 

where M4 is the fourth moment of the line profile, M4g 
is the fourth moment of the background, Wg is the 
variance of the background, and lg is the total back- 
ground intensity. 

The variances for fixed-count timing and minimum 
variance are easily written down as 

and 

oL(w)= R ( / / >  TLZo ~ ( j 4 _  2 Wj z + W2)I~ (83) 

aZ=,n(W)= ~ 27. Ij z -  WII}} , (84) 
J 

where (I7-1)=c/T is the average reciprocal intensity. 
As usual, these are more easily calculated than visu- 
alized. 

The variance is hardly dependent on the slope of the 
interpolated background, k, which vanishes from the 
main term of equation (80) because of the symmetry 
of the range. Its main dependence on the mean back- 
ground g is given by 

OW j2 W 
~g Lo Lo 

so that 

°2g(W): ~ 5 (W2--2Wj2~-j4)~2(g) 

~ - ~ -  ~ -  + g6- ' (85) 

where the variance of g is given by equations (134) to 
(136). 

5.6. The Fourier coefficients 
5.6.1. The normalized cosine Fourier coefficient Am 

is evaluated as 
27 ( I j -  Gj) cos(2rcmj/R) 

Am = J (86) 
z (xj- cj) ' 
J 

and the corresponding sine component as 

Z (I:-Gj)sin(2nmdR) 
Bm= j (87) 

27 (I~-G:) 
J 
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If the line profile is symmetrical the Bra'S all vanish, 
and if the centroid is used as the working origin they 
will in any case be of smaller importance than the Am's. 

Clearly A0= 1, ~2(A0)=0, 

B0 = 0, aZ(Bo) = 0.  (88) 

For m e 0 ,  the symmetry of the range and the as- 
sumed linearity of the background makes it possible 
to simplify equations (86) and (87) to 

X I~ cos(2rcmj/R) 
Am = j . . . . . . .  (89) 

X ( b - g )  
J 

and 
X [I j -  (G.R-- GL)j/R] sin(2rcmj/R) 

Bm = -~ .......... X, (Ij--g) 
J 

Differentiation gives 

• ( 9 0 )  

8Am cos(2z~mj/R) Am 
O~-Z - Lo Lo ' (9 l)  

8Bin _ sin(2rcmj/R) _ Bm (92) 
8Ij Lo Lo 

5.6.2. For fixed-time counting the variance of the 
cosine coefficients is therefore 

R 
a~t (Am) = T~o  f [cos(2rcmj/R)- AmlI 1 (93) 

R 
- TL~ X[½+½cos(4zcmj/R)-2Amcos(Zrcmj]R)+j A~I j  

R(Lo + Iv) RA2m R ( I v -  Lo)A2m 
- 2 L ~  + -2-Lo 7~- + L~T . (94) 

This takes on two limiting forms. For m small, A m "  l, 
so that 3R/v 

a~t (Am) " 2TL~ ' (95) 

and for m large, Am ~0,  so that 

R(L0 + Iv) 
a~t (Am) ~ 2TL~ (96) 

One may also remark that equation (94) sets a lower 
limit for Azm. Since the variance of Am must be positive, 

Azm>(2A~+ 1 ) ( 1 - I v / L o ) - 2 .  (97) 
The importance of the background in determining 

the variance for small m should be noted. For the effect 
of variance of the background see paragraph 5.6.4. 

The variance of the sine coefficients may be written 
down similarly: 

R 
a~t (Bin) = - ~ o  X [sin(2rcmj/R)- Bm]2Ij (98) 

d 

R 
- TL2o Xj [½-½ cos(4rcmj/R)-2Bm sin(2rcmj/R)+ B~]Ij 

R(Lo + tv) _Ravin R(Xv- Lo)B  
= 2 TL 2 - 2TLo + TL~ 

( - )mR2(GR-GL)Bm (99) 
+ zcmTL:~ ..... ' 

where the sum o f j  sin(2rcmffR) has been approximated 
by an integral. The peculiar contribution from the 
background slope should be noted. If  it can be assumed 
that in practice the Bm's are all small, equation (99) 
reduces to 

R(Lo+ Iv) RAzm (100) 
a~ t (Bin) - 2TLZ ° 2TLo 

For the effect of the variance of the background see 
paragraph 5.6.5• 

5.6.3. The fixed-count and minimum-variance equi- 
valents of equations (93) and (98) are 

.R,(I1-1 ) 
4o(Am)- TL o  Ecos(Z.mj/R)-Am]2I , (101) 

R(X;') olo(Bm)- TL ,  Esin(Z.mj/R)-Bm]V , (102) 

1 Icos(2rcmj/R)- Am[I~ (103) 

a~,,,(Bm) = rL~ Isin(2rcmj/R)-BmlI . (104) 

The minimum-variance expressions do not appear to 
be reducible to any more easily visualized form, but 
could easily be evaluated numerically by computer. 
The fixed-count expressions, equations (101) and (102) 
[and indeed (65) and (84)], could be expressed in terms 
of the Am's and Bra's by writing 

I~ = X [Am cos(2rcmj/R)+ Bm sin(2rcmj/R)] 
m , m  t 

x [Am" cos(2rcm'j/R)+ Bm sin(2rcm'j/R)] (105) 

and expressing the products of sines and cosines of m 
and m' as sines and cosines of the sums and differences 
m + m' and m - m ' .  Since the variance of each param- 
eter would involve all the Fourier coefficients, the use- 
fulness of the result is somewhat doubtful, and it is 
probably better to rely on numerical evaluations of the 
equations. For the effect of background variance see 
paragraph 5.6.5. 

5.6.4. The Fourier coefficients are not independent 
of one another, and for calculating the variance of, 
say, the particle-size distribution function from them 
by means of equation (1) it is necessary to know their 
covariances as well as their variances. The covariance 
of Am with An is easily written down from the general 
expression for the covariance of any two functions of 
independent random variables xs: 

OF1 8F2 
cov(F,,rz) = X aZ(xj), (106) 

J 8xj 8x~ 
giving 

c3Am dAn 
cov(Am, Am) = ~7 - -  a2(Is) (107) j Olj oIj 

1 
= L-~o X[cos(2zcmj/R)-Am]j 

× [cos(2rcnj]R)- An]a2(Ij) (108) 
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1 
- L~) Z[½i cos{2n(m+n)j/R} 

+-}2 cos { 2rc( m - n)j/ R } - Am cos( 2zcnj/ R ) 

- A n  cos(2nmj/R)+ AnAm]GZ(Ij) . (109) 

This takes a simple form only for fixed-time counting, 
for which ~2(Ij)=Ij/T=Rll/T. In this case each term 
becomes a Fourier coefficient: 

covft(Am, An) = R { LoT ½Am+n 

RgA--n--Am ~ (llO) 
+½Am-n-AnAm+ Lo J 

where m #n .  The covariance of the sine coefficients is 
similarly 

1_~ ,S, [sin(2nmj/ R ) -  Bin] cov(Bm, Bn) = L2 .i 

x [sin(2nnj/R)- Bn]crZ(I~) (111) 

1 
- L:~ ,S [½ cos{2n(m-n) j /R}-½ cos{2n(m+n)j/R} 

J 
--Bm sin(2nnj/R)-- Bn sin(2nmj/R)+ BnBm]cr2(Ij) , (112) 

so that for fixed-time counting 

covft(Bm, Bn) = --LoTR {½Am-n-½Am+n- BnBm 

RgBmBn GR - GL 
+ Bm ,Sj  sin(2nnj/R) 

Lo RLo j 

--  B .  G R - -  GL } 
RL-------~ Z. j sin(2nmj/R) 

J 

__ R f2.Am_n_½Am+n_BmBn + RgBmBn 
LoT [2 L0 

+ (GR-GL)R2nLo [ ( - )nBm (-)mBnm 1} ' (113) 

where again a slight approximation has been made in 
evaluating the sums multiplying the background slope. 
If  it can be assumed that the B's are small in compari- 
son with A's this reduces to 

R 
covft(Bm, Bn) - 2LoT {Am-n-Am+n}.  (114) 

The covariance of a sine with a cosine coefficient is 

1 
cov(Am, Bn) = L2 Z [cos(2nmj/R)- Am] 

J 
x [sin(Znn//R)- Bn]a2(Ij) (115) 

1 
- L2 ,S.i [½ sin{2n(m+n)j/R}-½ sin{Zn(m-n)j/R} 

- Am sin(2nnj/R) - Bn cos(2nmj/R) 

+ AmBn]t72(11) , (116) 

so that 

covft(Am, Bn) = LoT ½Bm+n-½Bm-n- AmBn 

(GR-Gz)  ( - - ) m + n n  
. . . . . . . . . .  

2nL0 m 2 -  n 2 

RgAmB. n_~ _ (GR-GL)R ( - ) n A m  + (117) 
2nL0 n L0 J 

for fixed-time counting. This appears to be smaller than 
the other covariances, since the only terms that do not 
involve a B involve the background slope. 

It should perhaps be stated explicitly that the above 
expressions are not valid if either m or n is zero. Co- 
variances involving A0 or B0 are of course zero. 

5.6.5. The derivatives of the Fourier coefficients with 
respect to the background observations are, from equa- 
tions (89) and (90), 

c3A m RAm 
- (118) 

~Gn 2Lo ' 

SAm RAm 
8GL" 2L0 ' (119) 

8Bm RBm 1 
. . . . . . . . . . . . . . . . . . . . .  ,Sj  sin(2nmj/R) (120) 
c~GR 2Lo RLo j 

RBm ( - ) m R  
"" -2-Lo + 2rc---[,oin" (121) 

OBm RBm 1 
aGL 2Lo + -/~-/~o-Xj sin(2nmj/R) (122) J 

RBm ( - ) m R  
"~ 2L0 2nLom" (123) 

The contributions to the variance arising from the back- 
ground are thus 

aZ(Am) = RZA2m 
--4L 2 [a2(GR)+a2(GL)] (124) 

and 

R2 [B2+ ---~2~-][t72(GR)+t72(GL)] ~(Bm) = :4-L~ ° 

(-)mRZBm 
+ 2nL2 m [aZ(GR)-a2(GL)], (125) 

where the variances of GR and GL are as given in Ap- 
pendix A. The covariances are similarly 

cov(A m, A n) = R2A mA n -4-L2 [t72(GR)-}-o'Z(GL)], (126) 

cov(Bm, Bn) 

-- RE [BmBn + 
4L~ l 
R 2 [ ( - )mBn 

+ 4 ~  m 

_)m+n 
n2mn ] [a2(GR)+a2(GL)] 

+ ( - )nBm]  [~2(6R)_~2(GL) ] 
n 

(127) 
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R2Am (Bn[~r2(GR)+a2(GL)] cov(Am, B.) . . . .  ~Z~- 

+-(----)"-~n [:(a~)-~2(c~)]}. (128) 

The full variances and covariances are thus the sums 
of the corresponding pairs of equations from the groups 
(94)-(117) and (124)-(128). 

This work was begun at the Georgia Institute of 
Technology, while the author was on leave from Uni- 
versity College, Cardiff. I am indebted to Professor 
R.A. Young for many helpful discussions, and to Dr 
J. I. Langford for criticism of a draft of the paper. 

APPENDIX A 
Statistical variance of the interpolated background 

If the background is determined from ½p observations 
at each end of the line, then effectively 

g=½(GL+Gn) , (129) 

where GL is the background on the left of the line and 
GR that on the right. The calculation of the variances 
of GL and GR is trivial, giving 

a~t ( G L) = 2G L/pv (130) 

for fixed-time counting, and 

a~(GL) = 2G2L /pc (131) 

for fixed-count timing. The variance of the mean back- 
ground is then 

a2(g) = ¼a2(GL) + ¼a2(GR) (132) 

1 
-- (GL+GR) (133) 2pr 

so that 
a2t (g) = g/pr (134) 

for fixed-time counting, and 

1 
a~c(g) = 2 - ~  (G~ + G~) (135) 

for fixed-count timing. Unless the slope is extreme this 
will not differ essentially from 

a2c(g)=g2/pc . (136) 

Similarly, the background slope is 

k = ( G R - G L ) / R  , (137) 

so that a2(k)=(a2(GR)+aZ(GL)}/R z , (138) 

a~t (k) =4g/pRZz (139) 

for fixed-time counting, and 

~o(k) = 2(c~ +C~}/pcR~ 
,,,4gE/pcR 2 

(140) 

(141) 

for fixed-count timing. The background variance at 
the j th  step is to an appreciable extent a function ofj. 
Since 

6j = g + kj  (142) 

J {GR--GL}, (143) =½{GR+CL}+ 

,:(Gj) = (½ + J-)2,:(GR) + (½-i)2,r2(GL) 

_- ¼(o-2(GR) + o-2(GL)} 

J (o-2(GR)_ a2(GL) } +~ 

j2 
+ ~2 { °'2(GR)+Cr2(GL)}" (144) 

For fixed-time counting this becomes 

a~t(Gj)=g/pr + 2kj/pr +4gj2/pR2v , (145) 

and for fixed-count timing 

1 o~o(c:) = ~ y  {6~ + 6 2 ) 

2j ( G2 _ G2 } + . 2j z 
+ p c R  peR2 {G2+G 2} (146) 

=(g2+ ¼ R2k2) /pc + 4gkj/pc + 4(g2 + ¼ R2kZ)j2/peR 2 (147) 

,,,g2/pe+4gkj/pe+4g2j2/pcR 2 . (148) 

In either case the variance has a minimum (at j =  
-RZk/4g and j,,, -R2k/2g respectively), and is roughly 
twice as great near the ends of the range as it is near 
the middle. 

The covariance of the mean background and the 
background slope is 

cov(g,k) = Og Ok aE(GL) +0 
OGt, OGL 

t3g Ok a2(Gn) (149) 
+ 0 +  OGn c~Gn 

_ 1 {a2(Gn)_a2(GL) } (150) 
2R 

and is thus small unless the background slope is large. 

APPENDIX B 
Effect of background slope on peak positions 

The expressions derived by Wilson (1965) for the vari- 
ance of the peak position apply to the observed line 
profile without correction for background. If a sloping 
background g + k j  is subtracted, the equation for the 
least-squares parabola becomes 
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I j = ( A - g ) + ( B d - k ) j + C 6 Z ]  z , (151) 

with its peak displaced from -B /25C  to 

xm = - ( B -  kld)125C . (152) 

The variance of its position is thus increased by 

aZt(k/2(52C),'~g/2pR2(~4C2z (153) 

for fixed-time counting, and 

a~(k/2c~zc)..~g2/2pcRZd'C z (154) 

for fixed-count timing. 
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A New Method for Obtaining Phase Angles of Structure Factors 
of Non-Centrosymmetrie Structures by the Use of Anomalous Dispersion 
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Physikalisches Institut der Friedrich-Schiller-Universit~it, 69 Jena, Max-Wien-Platz 1, Germany (DDR) 
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A method is described for finding the phases of structure factors by using the ratio IFI~/IPl ~ instead 
of the Bijvoet difference I f l  ~ - IFP.  The'influence of errors of measurement is pointed out and a com- 
parison with the method of Bijvoet differences is made. 

Introduction and theory 

It is possible to obtain the phases of structure factors 
by making use of the effects of anomalous dispersion. 
The method is based on experimental measurements 
of the Bijvoet differences IFI2-IFI z between pairs of 
inverse reflexions hkl and hkl produced by the imaginary 
component Aft '  of the scattering factor (Ramachan- 
dran, 1964). In order to avoid difficulties and errors 
of measurement in the determination of the scale factor 
and the absorption-correction a new method is pro- 
posed, which uses the ratios IFI2/IFI 2 instead of the 
differences IFI 2 -  IFI z. If the irradiated volume of the 
crystal has an inversion centre, there is an immediate 
connexion between the direct measurable intensities S, 
S, and the ratio IFIZ/IFI 2. This connexion is given by 
IFIZ/IPI2=S/N. Supposing the crystal contains only 
one kind of atom, for which the imaginary component 
of the scattering factor is significant, whereas for all 
the other atoms this component is negligible, we get 
by simple geometrical considerations (Fig. 1) the fol- 
lowing equation (Unangst, 1965): 

s ( x m )  IFs(Xm)l  2 
S(,~m) = I~(~m)l 2- = 1 . . . . .  

Taking the following abbreviations 

~f"(2m) Af'(2m) 
. . . . .  -SO- - -  . . . .   ro-- 

f p(2m) =fo e + Af'(2m) + iAf"(2m) 

cm = aZm + b~ 

I ~ 1  

IFN(2m)I2+ IFN(Xm)I z S()~m)-]- S().m) 
q ~  = IFze(2~)l  z -  IFN(2~)I  z- -- S(~.m)- S(2m) 

we get 
1 + 2vbm cos ~ + v2cm 

qm = --2yam sin 
or 

- 1  
v = - -  [araqm sin c~ + bm cos 

¢m 

+ ~(a-m-~m sin c~q2bm cos a)f--cm]. (2) 

The ambiguity in respect of the sign of the square 
root can be resolved by using the independence of 2 
of the ratio v= IF°l/IF°l. From this it follows that 

sign l /~ sign(amtlm sin ~ +bm cos cQ. 

IFe°l Af"(2m) sin a 

(1) 
iFOl [ iFOl ]z 

1 + 2 -~Fo(fo [Af'(2m) cos c¢ + Af"(2m) sin c~] + ifOl]~O j [Af'Z(2m)+Af"2(2m)] 


